Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 131
Filter
1.
Sci Rep ; 13(1): 9161, 2023 06 06.
Article in English | MEDLINE | ID: covidwho-20245441

ABSTRACT

Proteases encoded by SARS-CoV-2 constitute a promising target for new therapies against COVID-19. SARS-CoV-2 main protease (Mpro, 3CLpro) and papain-like protease (PLpro) are responsible for viral polyprotein cleavage-a process crucial for viral survival and replication. Recently it was shown that 2-phenylbenzisoselenazol-3(2H)-one (ebselen), an organoselenium anti-inflammatory small-molecule drug, is a potent, covalent inhibitor of both the proteases and its potency was evaluated in enzymatic and antiviral assays. In this study, we screened a collection of 34 ebselen and ebselen diselenide derivatives for SARS-CoV-2 PLpro and Mpro inhibitors. Our studies revealed that ebselen derivatives are potent inhibitors of both the proteases. We identified three PLpro and four Mpro inhibitors superior to ebselen. Independently, ebselen was shown to inhibit the N7-methyltransferase activity of SARS-CoV-2 nsp14 protein involved in viral RNA cap modification. Hence, selected compounds were also evaluated as nsp14 inhibitors. In the second part of our work, we employed 11 ebselen analogues-bis(2-carbamoylaryl)phenyl diselenides-in biological assays to evaluate their anti-SARS-CoV-2 activity in Vero E6 cells. We present their antiviral and cytoprotective activity and also low cytotoxicity. Our work shows that ebselen, its derivatives, and diselenide analogues constitute a promising platform for development of new antivirals targeting the SARS-CoV-2 virus.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Methyltransferases , Peptide Hydrolases , Antiviral Agents/pharmacology , Antiviral Agents/metabolism , Cysteine Endopeptidases/metabolism , Protease Inhibitors/pharmacology , Molecular Docking Simulation
2.
Chem Pharm Bull (Tokyo) ; 71(5): 360-367, 2023.
Article in English | MEDLINE | ID: covidwho-2317290

ABSTRACT

Computational screening is one of the fundamental techniques in drug discovery. Each compound in a chemical database is bound to the target protein in virtual, and candidate compounds are selected from the binding scores. In this work, we carried out combinational computation of docking simulation to generate binding poses and molecular mechanics calculation to estimate binding scores. The coronavirus infectious disease has spread worldwide, and effective chemotherapy is strongly required. The viral 3-chymotrypsin-like (3CL) protease is a good target of low molecular-weight inhibitors. Hence, computational screening was performed to search for inhibitory compounds acting on the 3CL protease. As a preliminary assessment of the performance of this approach, we used 51 compounds for which inhibitory activity had already been confirmed. Docking simulations and molecular mechanics calculations were performed to evaluate binding scores. The preliminary evaluation suggested that our approach successfully selected the inhibitory compounds identified by the experiments. The same approach was applied to 8820 compounds in a database consisting of approved and investigational chemicals. Hence, docking simulations, molecular mechanics calculations, and re-evaluation of binding scores including solvation effects were performed, and the top 200 poses were selected as candidates for experimental assays. Consequently, 25 compounds were chosen for in vitro measurement of the enzymatic inhibitory activity. From the enzymatic assay, 5 compounds were identified to have inhibitory activities against the 3CL protease. The present work demonstrated the feasibility of a combination of docking simulation and molecular mechanics calculation for practical use in computational virtual screening.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Peptide Hydrolases/metabolism , Protease Inhibitors/chemistry , Viral Nonstructural Proteins , Cysteine Endopeptidases/chemistry , Cysteine Endopeptidases/metabolism , Molecular Dynamics Simulation , Molecular Docking Simulation , Antiviral Agents/pharmacology , Antiviral Agents/chemistry
3.
Int J Mol Sci ; 24(7)2023 Mar 23.
Article in English | MEDLINE | ID: covidwho-2301381

ABSTRACT

The main protease (Mpro or 3CLpro) is an enzyme that is evolutionarily conserved among different genera of coronaviruses. As it is essential for processing and maturing viral polyproteins, Mpro has been identified as a promising target for the development of broad-spectrum drugs against coronaviruses. Like SARS-CoV and MERS-CoV, the mature and active form of SARS-CoV-2 Mpro is a dimer composed of identical subunits, each with a single active site. Individual monomers, however, have very low or no catalytic activity. As such, inhibition of Mpro can be achieved by molecules that target the substrate binding pocket to block catalytic activity or target the dimerization process. In this study, we investigated GC376, a transition-state analog inhibitor of the main protease of feline infectious peritonitis coronavirus, and Nirmatrelvir (NMV), an oral, bioavailable SARS-CoV-2 Mpro inhibitor with pan-human coronavirus antiviral activity. Our results show that both GC376 and NMV are capable of strongly binding to SARS-CoV-2 Mpro and altering the monomer-dimer equilibrium by stabilizing the dimeric state. This behavior is proposed to be related to a structured hydrogen-bond network established at the Mpro active site, where hydrogen bonds between Ser1' and Glu166/Phe140 are formed in addition to those achieved by the latter residues with GC376 or NMV.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Cysteine Endopeptidases/metabolism , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Molecular Docking Simulation
4.
Int J Mol Sci ; 24(8)2023 Apr 12.
Article in English | MEDLINE | ID: covidwho-2294350

ABSTRACT

The latest monkeypox virus outbreak in 2022 showcased the potential threat of this viral zoonosis to public health. The lack of specific treatments against this infection and the success of viral protease inhibitors-based treatments against HIV, Hepatitis C, and SARS-CoV-2, brought the monkeypox virus I7L protease under the spotlight as a potential target for the development of specific and compelling drugs against this emerging disease. In the present work, the structure of the monkeypox virus I7L protease was modeled and thoroughly characterized through a dedicated computational study. Furthermore, structural information gathered in the first part of the study was exploited to virtually screen the DrugBank database, consisting of drugs approved by the Food and Drug Administration (FDA) and clinical-stage drug candidates, in search for readily repurposable compounds with similar binding features as TTP-6171, the only non-covalent I7L protease inhibitor reported in the literature. The virtual screening resulted in the identification of 14 potential inhibitors of the monkeypox I7L protease. Finally, based on data collected within the present work, some considerations on developing allosteric modulators of the I7L protease are reported.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Pharmaceutical Preparations , Peptide Hydrolases/metabolism , Molecular Docking Simulation , Viral Nonstructural Proteins/metabolism , Cysteine Endopeptidases/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Antiviral Agents/chemistry , Protease Inhibitors/pharmacology , Protease Inhibitors/therapeutic use , Protease Inhibitors/chemistry , Molecular Dynamics Simulation , Drug Repositioning/methods
5.
J Cell Biochem ; 124(6): 861-876, 2023 06.
Article in English | MEDLINE | ID: covidwho-2294095

ABSTRACT

The spread of different severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants underscores the need for insights into the structural properties of its structural and non-structural proteins. The highly conserved homo-dimeric chymotrypsin-like protease (3CL MPRO ), belonging to the class of cysteine hydrolases, plays an indispensable role in processing viral polyproteins that are involved in viral replication and transcription. Studies have successfully demonstrated the role of MPRO as an attractive drug target for designing antiviral treatments because of its importance in the viral life cycle. Herein, we report the structural dynamics of six experimentally solved structures of MPRO (i.e., 6LU7, 6M03, 6WQF, 6Y2E, 6Y84, and 7BUY including both ligand-free and ligand-bound states) at different resolutions. We have employed a structure-based balanced forcefield, CHARMM36m through state-of-the-art all-atoms molecular dynamics simulations at µ-seconds scale at room temperature (303K) and pH 7.0 to explore their structure-function relationship. The helical domain-III responsible for dimerization mostly contributes to the altered conformational states and destabilization of MPRO . A keen observation of the high degree of flexibility in the P5 binding pocket adjoining domain II-III highlights the reason for observation of conformational heterogeneity among the structural ensembles of MPRO . We also observe a differential dynamics of the catalytic pocket residues His41, Cys145, and Asp187, which may lead to catalytic impairment of the monomeric proteases. Among the highly populated conformational states of the six systems, 6LU7 and 7M03 forms the most stable and compact MPRO conformation with intact catalytic site and structural integrity. Altogether, our findings from this extensive study provides a benchmark to identify physiologically relevant structures of such promising drug targets for structure-based drug design and discovery of potent drug-like compounds having clinical potential.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Protein Conformation , Cysteine Endopeptidases/metabolism , Molecular Dynamics Simulation , Protease Inhibitors/chemistry , Molecular Docking Simulation , Antiviral Agents/chemistry
6.
Eur J Med Chem ; 254: 115376, 2023 Jun 05.
Article in English | MEDLINE | ID: covidwho-2293855

ABSTRACT

The high morbidity and mortality associated with SARS-CoV-2 infection, the etiological agent of COVID-19, has had a major impact on global public health. Significant progress has been made in the development of an array of vaccines and biologics, however, the emergence of SARS-CoV-2 variants and breakthrough infections are an ongoing major concern. Furthermore, there is an existing paucity of small-molecule host and virus-directed therapeutics and prophylactics that can be used to counter the spread of SARS-CoV-2, and any emerging and re-emerging coronaviruses. We describe herein our efforts to address this urgent need by focusing on the structure-guided design of potent broad-spectrum inhibitors of SARS-CoV-2 3C-like protease (3CLpro or Main protease), an enzyme essential for viral replication. The inhibitors exploit the directional effects associated with the presence of a gem-dimethyl group that allow the inhibitors to optimally interact with the S4 subsite of the enzyme. Several compounds were found to potently inhibit SARS-CoV-2 and MERS-CoV 3CL proteases in biochemical and cell-based assays. Specifically, the EC50 values of aldehyde 1c and its corresponding bisulfite adduct 1d against SARS-CoV-2 were found to be 12 and 10 nM, respectively, and their CC50 values were >50 µM. Furthermore, deuteration of these compounds yielded compounds 2c/2d with EC50 values 11 and 12 nM, respectively. Replacement of the aldehyde warhead with a nitrile (CN) or an α-ketoamide warhead or its corresponding bisulfite adduct yielded compounds 1g, 1eand1f with EC50 values 60, 50 and 70 nM, respectively. High-resolution cocrystal structures have identified the structural determinants associated with the binding of the inhibitors to the active site of the enzyme and, furthermore, have illuminated the mechanism of action of the inhibitors. Overall, the high Safety Index (SI) (SI=CC50/EC50) displayed by these compounds suggests that they are well-suited to conducting further preclinical studies.


Subject(s)
COVID-19 , Hepatitis C, Chronic , Middle East Respiratory Syndrome Coronavirus , Humans , SARS-CoV-2/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Peptide Hydrolases , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , Cysteine Endopeptidases/metabolism
7.
Eur J Med Chem ; 244: 114853, 2022 Dec 15.
Article in English | MEDLINE | ID: covidwho-2301653

ABSTRACT

SARS-CoV-2 caused worldwide the current outbreak called COVID-19. Despite multiple countermeasures implemented, there is an urgent global need for new potent and efficient antiviral drugs against this pathogen. In this context, the main protease (Mpro) of SARS-CoV-2 is an essential viral enzyme and plays a pivotal role in viral replication and transcription. Its specific cleavage of polypeptides after a glutamine residue has been considered as a key element to design novel antiviral drugs. Herein, we reported the design, synthesis and structure-activity relationships of novel α-ketoamides as covalent reversible inhibitors of Mpro, exploiting the PADAM oxidation route. The reported compounds showed µM to nM activities in enzymatic and in the antiviral cell-based assays against SARS-CoV-2 Mpro. In order to assess inhibitors' binding mode, two co-crystal structures of SARS-CoV-2 Mpro in complex with our inhibitors were solved, which confirmed the covalent binding of the keto amide moiety to the catalytic Cys145 residue of Mpro. Finally, in order to interrogate potential broad-spectrum properties, we assessed a selection of compounds against MERS Mpro where they showed nM inhibitory potency, thus highlighting their potential as broad-spectrum coronavirus inhibitors.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Humans , Coronavirus 3C Proteases , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , Viral Nonstructural Proteins , Cysteine Endopeptidases/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Molecular Docking Simulation
8.
Eur J Med Chem ; 250: 115186, 2023 Mar 15.
Article in English | MEDLINE | ID: covidwho-2253021

ABSTRACT

Since end of 2019, the global and unprecedented outbreak caused by the coronavirus SARS-CoV-2 led to dramatic numbers of infections and deaths worldwide. SARS-CoV-2 produces two large viral polyproteins which are cleaved by two cysteine proteases encoded by the virus, the 3CL protease (3CLpro) and the papain-like protease, to generate non-structural proteins essential for the virus life cycle. Both proteases are recognized as promising drug targets for the development of anti-coronavirus chemotherapy. Aiming at identifying broad spectrum agents for the treatment of COVID-19 but also to fight emergent coronaviruses, we focused on 3CLpro that is well conserved within this viral family. Here we present a high-throughput screening of more than 89,000 small molecules that led to the identification of a new chemotype, potent inhibitor of the SARS-CoV-2 3CLpro. The mechanism of inhibition, the interaction with the protease using NMR and X-Ray, the specificity against host cysteine proteases and promising antiviral properties in cells are reported.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Peptide Hydrolases , Cysteine Endopeptidases/metabolism , Protease Inhibitors/chemistry , Coronavirus 3C Proteases , Antiviral Agents/chemistry
9.
Int J Mol Sci ; 24(6)2023 Mar 14.
Article in English | MEDLINE | ID: covidwho-2250560

ABSTRACT

Laurus nobilis (bay laurel) is a natural source of biological compounds, and some of its extracts and phytocompounds are also endowed with antiviral activity toward the family of the severe acute respiratory syndrome (SARS)-associated ß-coronaviruses. Some glycosidic laurel compounds such as laurusides were proposed as inhibitors of important protein targets of SARS-CoV-2, which clearly recalls their potential as anti-COVID-19 drugs. Due to the frequent genomic variations of the ß-coronaviruses and the consequent importance of evaluating a new drug candidate with respect to the variants of the target ß-coronavirus, we decided to investigate at an atomistic level the molecular interactions of the potential laurel-derived drugs laurusides 1 and 2 (L01 and L02, respectively) toward a well-conserved and crucial target, the 3C-like protease (Mpro), using the enzymes of both the wild-type of SARS-CoV-2 and of the more recent Omicron variant. Thus, we performed molecular dynamic (MD) simulations of laurusides-SARS-CoV-2 protease complexes to deepen the knowledge on the stability of the interaction and compare the effects of the targeting among the two genomic variants. We found that the Omicron mutation does not significantly impact the lauruside binding and that L02 connects more stably with respect to L01 in the complexes from both variants, even though both compounds prevalently interact within the same binding pocket. Although purely in silico, the current study highlights the potential role of bay laurel phytocompounds in the antiviral and specifically anti-coronavirus research and shows their potential binding toward Mpro, corroborating the important commitment of bay laurel as functional food and disclosing novel scenarios of lauruside-based antiviral therapies.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Molecular Dynamics Simulation , Peptide Hydrolases/metabolism , Protease Inhibitors/chemistry , Viral Nonstructural Proteins/metabolism , Cysteine Endopeptidases/metabolism , Antiviral Agents/chemistry , Molecular Docking Simulation
10.
FEBS Open Bio ; 12(10): 1886-1895, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-2288695

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been spreading globally for over 2 years, causing serious contagious disease and incalculable damage. The introduction of vaccines has slowed the spread of SARS-CoV-2 to some extent, but there remains a need for specific and effective treatment. The high chemical diversity and safety profiles of natural products make them a potential source of effective anti-SARS-CoV-2 drugs. Cotton plant is one of the most important economic and medical crops and is the source of a large number of antiviral phytochemicals. In this work, we used SARS-CoV-2 main protein (Mpro ) as the target to identify potential anti-SARS-CoV-2 natural products in cotton. An in vitro assay showed that of all cotton tissues examined, cotton flower extracts (CFs) exhibited optimal inhibitory effects against Mpro . We proceeded to use the CF metabolite database to screen natural Mpro inhibitors by combining virtual screening and biochemical assays. We identified that several CF natural products, including astragalin, myricitrin, and astilbin, significantly inhibited Mpro with half-maximal inhibitory concentrations (IC50s) of 0.13, 10.73, and 7.92 µm, respectively. These findings may serve as a basis for further studies into the suitability of cotton as a source of potential therapeutics for SARS-CoV-2.


Subject(s)
Biological Products , COVID-19 Drug Treatment , Antiviral Agents/pharmacology , Coronavirus 3C Proteases , Cysteine Endopeptidases/metabolism , Drug Discovery , Flowers , Gossypium/metabolism , Protease Inhibitors/pharmacology , SARS-CoV-2 , Viral Nonstructural Proteins/metabolism
11.
Int J Mol Sci ; 24(4)2023 Feb 06.
Article in English | MEDLINE | ID: covidwho-2233318

ABSTRACT

The main protease (Mpro) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) plays a crucial role in its life cycle. The Mpro-mediated limited proteolysis of the viral polyproteins is necessary for the replication of the virus, and cleavage of the host proteins of the infected cells may also contribute to viral pathogenesis, such as evading the immune responses or triggering cell toxicity. Therefore, the identification of host substrates of the viral protease is of special interest. To identify cleavage sites in cellular substrates of SARS-CoV-2 Mpro, we determined changes in the HEK293T cellular proteome upon expression of the Mpro using two-dimensional gel electrophoresis. The candidate cellular substrates of Mpro were identified by mass spectrometry, and then potential cleavage sites were predicted in silico using NetCorona 1.0 and 3CLP web servers. The existence of the predicted cleavage sites was investigated by in vitro cleavage reactions using recombinant protein substrates containing the candidate target sequences, followed by the determination of cleavage positions using mass spectrometry. Unknown and previously described SARS-CoV-2 Mpro cleavage sites and cellular substrates were also identified. Identification of target sequences is important to understand the specificity of the enzyme, as well as aiding the improvement and development of computational methods for cleavage site prediction.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , HEK293 Cells , Cysteine Endopeptidases/metabolism , Electrophoresis , Protease Inhibitors/chemistry , Molecular Docking Simulation
12.
Braz J Biol ; 84: e250667, 2022.
Article in English | MEDLINE | ID: covidwho-2231828

ABSTRACT

Nigella sativa is known for the safety profile, containing a wealth of useful antiviral compounds. The main protease (Mpro, 3CLpro) of severe acute respiratory syndrome 2 (SARS-CoV-2) is being considered as one of the most attractive viral target, processing the polyproteins during viral pathogenesis and replication. In the current investigation we analyzed the potency of active component, thymoquinone (TQ) of Nigella sativa against SARS-CoV-2 Mpro. The structures of TQ and Mpro was retrieved from PubChem (CID10281) and Protein Data Bank (PDB ID 6MO3) respectively. The Mpro and TQ were docked and the complex was subjected to molecular dynamic (MD) simulations for a period 50ns. Protein folding effect was analyzed using radius of gyration (Rg) while stability and flexibility was measured, using root means square deviations (RMSD) and root means square fluctuation (RMSF) respectively. The simulation results shows that TQ is exhibiting good binding activity against SARS-CoV-2 Mpro, interacting many residues, present in the active site (His41, Cys145) and also the Glu166, facilitating the pocket shape. Further, experimental approaches are needed to validate the role of TQ against virus infection. The TQ is interfering with pocket maintaining residues as well as active site of virus Mpro which may be used as a potential inhibitor against SARS-CoV-2 for better management of COVID-19.


Subject(s)
COVID-19 Drug Treatment , Nigella sativa , Benzoquinones , Coronavirus 3C Proteases , Cysteine Endopeptidases/chemistry , Cysteine Endopeptidases/metabolism , Nigella sativa/metabolism , SARS-CoV-2 , Viral Proteins/chemistry , Viral Proteins/metabolism
13.
Life Sci ; 255: 117831, 2020 Aug 15.
Article in English | MEDLINE | ID: covidwho-1267781

ABSTRACT

A new SARS coronavirus (SARS-CoV-2) belonging to the genus Betacoronavirus has caused a pandemic known as COVID-19. Among coronaviruses, the main protease (Mpro) is an essential drug target which, along with papain-like proteases catalyzes the processing of polyproteins translated from viral RNA and recognizes specific cleavage sites. There are no human proteases with similar cleavage specificity and therefore, inhibitors are highly likely to be nontoxic. Therefore, targeting the SARS-CoV-2 Mpro enzyme with small molecules can block viral replication. The present study is aimed at the identification of promising lead molecules for SARS-CoV-2 Mpro enzyme through virtual screening of antiviral compounds from plants. The binding affinity of selected small drug-like molecules to SARS-CoV-2 Mpro, SARS-CoV Mpro and MERS-CoV Mpro were studied using molecular docking. Bonducellpin D was identified as the best lead molecule which shows higher binding affinity (-9.28 kcal/mol) as compared to the control (-8.24 kcal/mol). The molecular binding was stabilized through four hydrogen bonds with Glu166 and Thr190 as well as hydrophobic interactions via eight residues. The SARS-CoV-2 Mpro shows identities of 96.08% and 50.65% to that of SARS-CoV Mpro and MERS-CoV Mpro respectively at the sequence level. At the structural level, the root mean square deviation (RMSD) between SARS-CoV-2 Mpro and SARS-CoV Mpro was found to be 0.517 Å and 0.817 Å between SARS-CoV-2 Mpro and MERS-CoV Mpro. Bonducellpin D exhibited broad-spectrum inhibition potential against SARS-CoV Mpro and MERS-CoV Mpro and therefore is a promising drug candidate, which needs further validations through in vitro and in vivo studies.


Subject(s)
Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Betacoronavirus/enzymology , Coronavirus Infections/drug therapy , Plant Extracts/pharmacology , Pneumonia, Viral/drug therapy , Viral Nonstructural Proteins/antagonists & inhibitors , Amino Acid Sequence , Antiviral Agents/chemistry , Betacoronavirus/metabolism , Binding Sites , COVID-19 , Computer Simulation , Coronavirus 3C Proteases , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Cysteine Endopeptidases/chemistry , Cysteine Endopeptidases/metabolism , Drug Evaluation, Preclinical/methods , Humans , Molecular Docking Simulation , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , Protease Inhibitors/chemistry , Protein Binding , SARS-CoV-2 , Small Molecule Libraries/pharmacology , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism , Virus Replication/drug effects
14.
Eur J Med Chem ; 249: 115129, 2023 Mar 05.
Article in English | MEDLINE | ID: covidwho-2178287

ABSTRACT

The 3C-like protease (3CLpro) is essential for the replication and transcription of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), making it a promising target for the treatment of corona virus disease 2019 (COVID-19). In this study, a series of 2,3,5-substituted [1,2,4]-thiadiazole analogs were discovered to be able to inhibit 3CLpro as non-peptidomimetic covalent binders at submicromolar levels, with IC50 values ranging from 0.118 to 0.582 µM. Interestingly, these compounds were also shown to inhibit PLpro with the same level of IC50 values, but had negligible effect on proteases such as chymotrypsin, cathepsin B, and cathepsin L. Subsequently, the antiviral abilities of these compounds were evaluated in cell-based assays, and compound 6g showed potent antiviral activity with an EC50 value of 7.249 µM. It was proposed that these compounds covalently bind to the catalytic cysteine 145 via a ring-opening metathesis reaction mechanism. To understand this covalent-binding reaction, we chose compound 6a, one of the identified hit compounds, as a representative to investigate the reaction mechanism in detail by combing several computational predictions and experimental validation. The process of ring-opening metathesis was theoretically studied using quantum chemistry calculations according to the transition state theory. Our study revealed that the 2,3,5-substituted [1,2,4]-thiadiazole group could covalently modify the catalytic cysteine in the binding pocket of 3CLpro as a potential warhead. Moreover, 6a was a known GPCR modulator, and our study is also a successful computational method-based drug-repurposing study.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Peptide Hydrolases , Cysteine , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , Cysteine Endopeptidases/metabolism , Antiviral Agents/chemistry
15.
Biochem Biophys Res Commun ; 645: 132-136, 2023 02 19.
Article in English | MEDLINE | ID: covidwho-2176742

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been a public health concern worldwide. Ensitrelvir (S-217622) has been evaluated as an antiviral treatment for COVID-19, targeting SARS-CoV-2 3C-like protease (3CLpro). Ensitrelvir has been reported to have comparable antiviral activity against some of the SARS-CoV-2 variants: alpha, beta, gamma, delta, and omicron (BA.1.18). In this paper, we describe that ensitrelvir is effective against newly emerging SARS-CoV-2 variants and globally prevalent 3CLpro mutations. Ensitrelvir exhibited comparable antiviral activity against SARS-CoV-2 variants, including recently emerging ones: omicron (BA1.1, BA.2, BA.2.75, BA.4, BA.5, BQ.1.1, XBB.1, and XE), mu, lambda, and theta. Genetic surveillance of SARS-CoV-2 3CLpro, the target of ensitrelvir, was conducted using a public database and identified 11 major 3CLpro mutations circulating globally (G15S, T21I, T24I, K88R, L89F, K90R, P108S, P132H, A193V, H246Y, and A255V). The 3CLpro mutation from proline to histidine at amino acid position 132 was especially identified in the omicron variant, with prevalence of 99.69%. Enzyme kinetic assay revealed that these 3CLpro mutants have enzymatic activity comparable to that of the wild type (WT). Next, we assessed the inhibitory effect of ensitrelvir against mutated 3CLpro, with it showing inhibitory effects similar to that against the WT. These in vitro data suggest that ensitrelvir will be effective against currently circulating SARS-CoV-2 variants, including omicron variants and those carrying 3CLpro mutations, which emerging novel SARS-CoV-2 variants could carry.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Peptide Hydrolases , Cysteine Endopeptidases/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Protease Inhibitors/pharmacology
16.
Viruses ; 15(1)2023 Jan 15.
Article in English | MEDLINE | ID: covidwho-2200888

ABSTRACT

The emergence of the Coronavirus Disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has led to over 6 million deaths. The 3C-like protease (3CLpro) enzyme of the SARS-CoV-2 virus is an attractive druggable target for exploring therapeutic drug candidates to combat COVID-19 due to its key function in viral replication. Marine natural products (MNPs) have attracted considerable attention as alternative sources of antiviral drug candidates. In looking for potential 3CLpro inhibitors, the MNP database (>14,000 molecules) was virtually screened against 3CLpro with the assistance of molecular docking computations. The performance of AutoDock and OEDocking software in anticipating the ligand-3CLpro binding mode was first validated according to the available experimental data. Based on the docking scores, the most potent MNPs were further subjected to molecular dynamics (MD) simulations, and the binding affinities of those molecules were computed using the MM-GBSA approach. According to MM-GBSA//200 ns MD simulations, chetomin (UMHMNP1403367) exhibited a higher binding affinity against 3CLpro than XF7, with ΔGbinding values of −55.5 and −43.7 kcal/mol, respectively. The steadiness and tightness of chetomin with 3CLpro were evaluated, revealing the high stabilization of chetomin (UMHMNP1403367) inside the binding pocket of 3CLpro throughout 200 ns MD simulations. The physicochemical and pharmacokinetic features of chetomin were also predicted, and the oral bioavailability of chetomin was demonstrated. Furthermore, the potentiality of chetomin analogues −namely, chetomin A-D− as 3CLpro inhibitors was investigated. These results warrant further in vivo and in vitro assays of chetomin (UMHMNP1403367) as a promising anti-COVID-19 drug candidate.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Molecular Dynamics Simulation , Molecular Docking Simulation , Peptide Hydrolases/metabolism , Viral Nonstructural Proteins/metabolism , Cysteine Endopeptidases/metabolism , Protease Inhibitors/chemistry , Antiviral Agents/therapeutic use
17.
Sci Rep ; 12(1): 21037, 2022 Dec 05.
Article in English | MEDLINE | ID: covidwho-2151084

ABSTRACT

Targeted covalent inhibition represents one possible strategy to block the function of SARS-CoV-2 Main Protease (MPRO), an enzyme that plays a critical role in the replication of the novel SARS-CoV-2. Toward the design of covalent inhibitors, we built a covalent inhibitor dataset using deep learning models followed by high throughput virtual screening of these candidates against MPRO. Two top-ranking inhibitors were selected for mechanistic investigations-one with an activated ester warhead that has a piperazine core and the other with an acrylamide warhead. Specifically, we performed a detailed analysis of the free energetics of covalent inhibition by hybrid quantum mechanics/molecular mechanics simulations. Cleavage of a fragment of the non-structured protein (NSP) from the SARS-CoV-2 genome was also simulated for reference. Simulations show that both candidates form more stable enzyme-inhibitor (E-I) complexes than the chosen NSP. It was found that both the NSP fragment and the activated ester inhibitor react with CYS145 of MPRO in a concerted manner, whereas the acrylamide inhibitor follows a stepwise mechanism. Most importantly, the reversible reaction and the subsequent hydrolysis reaction from E-I complexes are less probable when compared to the reactions with an NSP fragment, showing promise for these candidates to be the base for efficient MPRO inhibitors.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Humans , Protease Inhibitors/pharmacology , Protease Inhibitors/metabolism , Cysteine Endopeptidases/metabolism , Esters , Acrylamides , Molecular Docking Simulation , Antiviral Agents/pharmacology
18.
Elife ; 112022 06 20.
Article in English | MEDLINE | ID: covidwho-2124073

ABSTRACT

With the continual evolution of new strains of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) that are more virulent, transmissible, and able to evade current vaccines, there is an urgent need for effective anti-viral drugs. The SARS-CoV-2 main protease (Mpro) is a leading target for drug design due to its conserved and indispensable role in the viral life cycle. Drugs targeting Mpro appear promising but will elicit selection pressure for resistance. To understand resistance potential in Mpro, we performed a comprehensive mutational scan of the protease that analyzed the function of all possible single amino acid changes. We developed three separate high throughput assays of Mpro function in yeast, based on either the ability of Mpro variants to cleave at a defined cut-site or on the toxicity of their expression to yeast. We used deep sequencing to quantify the functional effects of each variant in each screen. The protein fitness landscapes from all three screens were strongly correlated, indicating that they captured the biophysical properties critical to Mpro function. The fitness landscapes revealed a non-active site location on the surface that is extremely sensitive to mutation, making it a favorable location to target with inhibitors. In addition, we found a network of critical amino acids that physically bridge the two active sites of the Mpro dimer. The clinical variants of Mpro were predominantly functional in our screens, indicating that Mpro is under strong selection pressure in the human population. Our results provide predictions of mutations that will be readily accessible to Mpro evolution and that are likely to contribute to drug resistance. This complete mutational guide of Mpro can be used in the design of inhibitors with reduced potential of evolving viral resistance.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Cysteine Endopeptidases/metabolism , Humans , Protease Inhibitors , SARS-CoV-2/genetics , Saccharomyces cerevisiae/metabolism , Viral Nonstructural Proteins/metabolism
19.
J Chem Phys ; 157(18): 185101, 2022 Nov 14.
Article in English | MEDLINE | ID: covidwho-2119368

ABSTRACT

The main protease (Mpro) of SARS-CoV-2 is an essential enzyme for the replication of the virus causing the COVID-19 pandemic. Because there is no known homologue in humans, it has been proposed as a primary target for antiviral drug development. Here, we explore the potential of five acrylamide-based molecules as possible covalent inhibitors, leading to target MPro by docking, followed by polarizable molecular dynamics (MD) and quantum mechanics/molecular mechanics (QM/MM) calculations. All calculations involving a classical potential were calculated with the AMOEBABIO18 polarizable force field, while electronic structure calculations were performed within the framework of density functional theory. Selected docking poses for each of the five compounds were used for MD simulations, which suggest only one of the tested leads remains bound in a catalytically active orientation. The QM/MM results for the covalent attachment of the promising lead to the catalytic serine suggest that this process is thermodynamically feasible but kinetically unlikely. Overall, our results are consistent with the low labeling percentages determined experimentally and may be useful for further development of acrylamide-based leads.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Pandemics , Coronavirus 3C Proteases , Molecular Dynamics Simulation , Peptide Hydrolases/metabolism , Acrylamide , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism , Cysteine Endopeptidases/chemistry , Cysteine Endopeptidases/metabolism , Molecular Docking Simulation
20.
PLoS One ; 17(11): e0277328, 2022.
Article in English | MEDLINE | ID: covidwho-2119171

ABSTRACT

A therapy for COVID-19 (Coronavirus Disease 19) caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) remains elusive due to the lack of an effective antiviral therapeutic molecule. The SARS-CoV-2 main protease (Mpro), which plays a vital role in the viral life cycle, is one of the most studied and validated drug targets. In Several prior studies, numerous possible chemical entities were proposed as potential Mpro inhibitors; however, most failed at various stages of drug discovery. Repositioning of existing antiviral compounds accelerates the discovery and development of potent therapeutic molecules. Hence, this study examines the applicability of anti-dengue compounds against the substrate binding site of Mpro for disrupting its polyprotein processing mechanism. An in-silico structure-based virtual screening approach is applied to screen 330 experimentally validated anti-dengue compounds to determine their affinity to the substrate binding site of Mpro. This study identified the top five compounds (CHEMBL1940602, CHEMBL2036486, CHEMBL3628485, CHEMBL200972, CHEMBL2036488) that showed a high affinity to Mpro with a docking score > -10.0 kcal/mol. The best-docked pose of these compounds with Mpro was subjected to 100 ns molecular dynamic (MD) simulation followed by MM/GBSA binding energy. This showed the maximum stability and comparable ΔG binding energy against the reference compound (X77 inhibitor). Overall, we repurposed the reported anti-dengue compounds against SARS-CoV-2-Mpro to impede its polyprotein processing for inhibiting SARS-CoV-2 infection.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Humans , Drug Repositioning , Polyproteins , Viral Nonstructural Proteins/metabolism , Cysteine Endopeptidases/metabolism , Protease Inhibitors/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Molecular Dynamics Simulation , Peptide Hydrolases/metabolism , Molecular Docking Simulation
SELECTION OF CITATIONS
SEARCH DETAIL